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An asymmetric form of the discrete Schrodinger equation 
with application to the inverse tunnelling problem? 
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Alberta, Canada, T6G 2J1 
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Abstract. If the solution of the Schrodinger equation at one boundary joins smoothly to a 
plane wave, then from the knowledge of the logarithmic derivative of the wavefunction at 
the other boundary one can determine the potential between these two boundaries. In this 
paper a discrete method of solving the inverse problem for potentials of finite range is 
discussed where the frequency-dependent logarithmic derivative of the wavefunction is 
fitted at N points using Thiele’s reciprocal difference method. This fit is compatible with the 
solution obtained from an asymmetric discrete form of the wave equation. By comparing 
the logarithmic derivatives found from the fit and calculated from the difference equation, 
one can determine the potential. The method has been tested on two exactly solvable 
problems. 

1. Introduction 

Symmetric forms of difference equations approximating a given differential equation 
have been studied by a number of authors in connection with the inverse problems of 
quantum scattering theory and of the wave propagation (Case and Kac 1973, Zakhar’ev 
et a1 1977, Hron and Razavy 1977, 1979, Berryman and Greene 1978). In these 
formulations one deals with a real input function, namely, the phaseshift, or a related 
quantity, the logarithmic derivative of the wavefunction outside the range of the 
potential. This latter quantity is also real and can be expressed as the ratio of two 
polynomials. According to the way that one formulates the problem, the variable in 
these polynomials is either k2A2 or cos k A ,  where k and A are the wavenumber and the 
element of length (the difference operator) respectively. A source of difficulty in the 
application of these methods is that of fitting the input data in such a way that the 
resulting expression for the logarithmic derivative turns out, to be compatible with the 
corresponding form found from the solution of the difference equation. In the cases 
where the phaseshift is known analytically, or the logarithmic derivative of the 
wavefunction is obtained from the solution of the direct problem, this difficulty is not 
serious. But if the data are known as a series of measured points, then a general Pad6 
approximant [ L / M ]  (Baker 1975) can be used to find a fit to the logarithmic derivative 
of the wavefunction only if the generating difference equation for the approximants can 
be related to the Schrodinger equation. In this work we choose a special form of the 
Pad6 approximant, namely, Thiele’s reciprocal difference method (Milne-Thomson 
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1951, Baker 1975) to fit the input data. Other PadC-type fits may be more appropriate 
when certain aspects of the available information need to be emphasised, e.g., the 
correct asymptotic behaviour as a function of k, or the least-squares fit of approximating 
the input data (Miller 1970). Here Thiele's method is chosen on account of its simplicity 
and its compatibility with the solution of a simple difference equation. Since the Pad6 
approximant resulting from this fit cannot be used in conjunction with the previously 
considered symmetric forms of the difference equation, we have studied the possibility 
of reformulating the discrete version of the wave equation by replacing the symmetric 
forms by an asymmetric one. By an asymmetric difference equation we mean an 
equation whose generating (tri-diagonal) matrix is not symmetric. This asymmetric 
difference equation reduces to the Schrodinger equation in the limit of A+O, and 
N+m, and can be used with the Pad6 approximant obtained by Thiele's rational 
fraction fit. In this case the polynomials are functions of the complex variable l2 - 24' 
where 4' = exp( -ikA). Since the wave amplitude now is a function of the complex 
variable 4"-2f; the method is applicable to the cases where the solution of the 
Schrodinger equation is complex. For instance, the inverse problem of reflection and 
transmission through a potential barrier or inverse scattering by complex potentials are 
among those that can be solved by this method. 

The Schrodinger equation and its corresponding asymmetric difference equation 
and their boundary conditions are studied in 9 2 of the present paper. In § 3 two 
solvable models of the Schrodinger equation are discussed, and from their exact 
solutions, the ratio of the wavefunction at two neighbouring points and also their 
logarithmic derivatives at one of the boundaries are obtained. These are used to test the 
validity and the accuracy of replacing the Schrodinger equation by a finite-difference 
equation. In B 4 the pointwise fit of the input data is discussed when the logarithmic 
derivative of the wavefunction is given for a number of frequencies. For the two 
solvable models, the results of the direct and the inverse problems are found and 
compared with the exact result in 0 5 .  

2. A discrete form of the wave equation 

Let us consider a one-dimensional problem where a potential barrier partially reflects 
and partially transmits the incident wave. We assume that the potential barrier, which 
extends from x = c to a finite range b, is continuous everywhere except at x = c. In the 
direct problem, from the potential (x) one determines the coefficients of reflection and 
transmission for this barrier. In the inverse problem the logarithmic derivative of the 
wavefunction at x = c is given as a function of the wavenumber and the object is to 
construct the potential from this logarithmic derivative. To solve the direct problem we 
start with the Schrodinger equation 

+ " + ( k 2 - v ( x ) ) 4  = o  (2.1) 

where primes denote derivatives with respect to x. The solution of (2.1) in the two 
regions x < c and x > c can be written as 
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where f(k, x) is the solution of (2.1) with the boundary condition 

lim f(x) + eikx. (2.4) 

Z ( k ) = i k ( A - B  e-2ikc) / (A+B e-2ikc)=f'(k, c)/f(k, c ) .  

x+m 

At x = c the logarithmic derivatives of (2.2) and (2.3) should be equal, i.e. 

(2.5) 

Solving (2.5) for B/A we find the reflection amplitude: 

Now let us formulate the discrete version of this problem. Generally the difference 
equation which replaces the Schrodinger equation is written in a symmetric way, i.e. f" is 
approximated by A-2(fn+l + fn-l -2fn) where A is the difference interval. But this 
replacement is not unique; other symmetric or asymmetric difference equations can be 
found that reduce to the Schrodinger equation as A + 0, and have the same percentage 
of error. The particular form that will be considered in this paper is 

As far as we know this form has not been used before, and the best argument for its use 
is the close agreement between the results obtained with this form and from the exact 
solution of the Schrodinger equation. 

We observe that in the limit of A +  0, this difference equation can be written as 

A-'( f n + l +  fn -1 -  2fn 1 = - (k2 - vn) fn+1  (2.9) 

f"+ (k2  - v(x))f = 0. (2.10) 

v,  = o  for n 2 N  (2.11) 

and hence as A +  0, (2.7) goes over to the differential equation (2.1) or 

For large values of x, u ( x )  tends to zero; therefore in the discrete version we have 

where NA = b - c represents the range of the potential, i.e. for x 3 NA + c the potential 
is either zero or negligibly small. Thus for n 3 N (2.7) reduces to 

f n - 1 =  2fn + (12-21)fn+1 (2.12) 

which has two independent solutions 

fn  = f -" = exp(ikAn) 

fn  = (2 - l)-" 

n > N  

n >N. 
or 

(2.13) 

(2.14) 

The boundary condition (2.4) shows that (2.13) is the acceptable solution of (2.12). 
Now let us change fn to Fn where 

Fn = 2"fn ; (2.15) 

then the difference equation (2.7) changes to 

Fn-l =Fn+f(12--21) exp(-A2vn)Fn+1. (2.16) 
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This difference equation used with the boundary condition 

n n 2 N  (2.17) F = 2” e iknA = 2”b-n 

enables us to write fo/fl as a continued J fraction (Wall 1948) 

(2.18) 

Thus the quantity that corresponds to the logarithmic derivative in this formulation is 
given by the relation 

ZN(~) = A-’(I -fo/fi). (2.19) 

For solving the direct problem we start with equation (2.16) for n = N and n = N + 1, 
and note that since on = 0, according to equation (2.17), we have 

--- FN -:g=;{1 -[1+(52-25)]1’2} 
FN+I 

and 

(2.20) 

Equations (2.20) and (2.21) enable us to calculate Fn-l/Fn for any value of n from the 
recursion relation 

(2.22) 

In this way we can calculate Fo/Fl by N iterations and then determine ZN(5) from 
(2.19). Because of the boundary condition (2.20) Fo/Fl is a function of 5 and not 5’- 25 
which is the parameter appearing in the difference equation (2.22). However, for any 
rational approximation of (2.20) in terms of L2 - 25, FO/Fi and consequently ZN(5) will 
depend on 5’ - 25. 

3. Examples 

We can test the accuracy of the approximate form of Z(5) calculated from (2.19) by 
comparing ZN(5) obtained by numerical calculation with the corresponding quantity 
Z ( k )  (equation (25)) derived from the exact solution of the Schrodinger equation. For 
this purpose we consider two solvable models where in each model Z ( k )  is given in 
terms of elementary functions. In the first model the potential decreases exponentially 
for large x and the Schrodinger equation is given by 

+“+ k2+  = 2vp’ e-’””+/(l- v e-&’)’ V < 1 .  (3.1) 
For this case we choose b to be a number much larger than l /p  and take c = 0. The 
solution of (3.1) subject to the boundary condition 

is 
+(x)=eikx[ l+2v e-””/(l-2ik/p)(l-v e-*’)], 

(3.2) 

(3.3) 
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From the analytical form of $(x), we can calculate Z ( k )  = @’(O) /$ (O) .  This quantity is 
related to the solution of the difference equation (fl-fo)/Afo in the limit of A+O.  
Alternatively we can express fo/fl in terms of 4 and its derivative at the origin: 

f o / f 1 =  $(O)/($(O)+A$’(O)) (3.4) 

fo = * ( O )  and f l =  $(x = A). (3.5) 

provided that A is very small. A better approximation for fo/fl results by noting that 

Using these relations and equation (3.3) we find 

f O / f l =  l{(1 - v ) [ 1 + ( 2 / ~ A )  In l1+2v}/U(l -v){[ l+Wr.~A)  In l l  
+2v e-wA/(l - Y e-”’)}] (3.6) 

where 5 is given by (2.8). As a second example we consider the Schrodinger equation 

with the boundary condition 

$(x) = eikx x ~ b .  

The solution of (3.7) subject to the boundary condition (3.8) is 

where 

q 2 =  k2+2/b2  

cr (x) = sin q x / ( q x )  -cos qx 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

p ( x )  =sin qx +cos qx/(qx) (3.12) 

cosqx sinqx 
y ( x )  = (&2 +sin qx 

qx 
and 

sinqx cosqx 
S ( x )  =-+,-cos qx.  

qx (qx )  

From equation (3.9) we can calculate the logarithmic derivative of $ at x = c 

4. Pointwise fit of the logarithmic derivative of the wavefunction 

(3.13) 

(3.14) 

(3.15) 

Let us assume that the logarithmic derivattve of the wavefunction as a function of 
5 = (12 -2LJ-l is given for N + 1 values of 5, say, 61, . . . , &, &+I. We can express this 
logarithmic derivative as a continued fraction by means of Thiele’s reciprocal difference 
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method (Milne-Thomson 1951). Let us write 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

If we increase the order of approximation from N to N + 1, all the a remain the same, 
but aN+1 will be added to Z( [ )  in (4.1). The continued fraction (4.1) is generated by the 
following difference equation 

s n + l = s n  + ( t - t n ) a n S n - l  (4.5) 

which has exactly the form of the difference equation (2.16) for F,. Because of this 
important property the functional form of Z N ( ~ )  will be the same as &(12 - 2 l )  given 
by equations (2.18) and (2.19). For even N, Z N ( ~ )  is the ratio of two polynomials each 
of order $N, whereas for odd N, ZN(()  is the ratio of a polynomial of order $(N - 1) 
divided by a polynomial of order $(N + 1) (Schlessinger 1968, Baker 1975). 

5. Results 

Starting with the boundary condition (2.20), we can solve the direct problem by 
iterating (2.22) N times to find Fo/Fl.  Then using (2.15) and (2.19) we can calculate 
ZN(l ) .  In tables 1 and 2 values of f o / f l  are given for the Eckart potential (equation 
(3.1)) with the parameters ,U = 1 and v = 5. The results of numerical calculation are 
compared with the analytic solution (3.6) in table 1. The real part of fo/fl is very close to 
one for all wavenumbers (see equation (3.4)), but the imaginary part varies significantly 
as k changes. The agreement between the solution of the difference equation (2.22) 
and the differential equation (3.1) is excellent for all values of k. 

To solve the inverse problem we proceed in two different ways. In the first case we 
calculatefo/fl from the difference equation by iteration as a function of l2 -2l .  Having 
obtained a Pad6 approximant of the form [$(N - l)/$(N + l)] or [$N/$N] for this 
quantity, we invert it using a J-fraction expansion (Wall 1948), and from the coefficients 
of expansion we determine the potential. This has been done for the Eckart potential in 
table 2, where the potential input is given at 48 points and after inversion the output 
potential is obtained at the same 48 points. By comparing the given numbers in this 
table it is clear that the method works very well for the first 10 points and after that it 
becomes unreliable because of the accumulation of errors. It is remarkable that the 
unreliable results are for the points where the potential is already very small. For the 
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Table 1. The real and imaginary parts of fo/f1 calculated for the Eckart potential using 
equations (3.6) and (2.18) respectively. The parameters used in this calculation are 
N = 5000, A = 4 x  p = 1 and Y =  f. 

K 

0.100 000E-02 1.000 29 -0.157 213E-06 1.000 30 -0.399 820E-06 
0.100 000E-01 1.000 29 -0.157 221E-05 1.000 30 -0.397 119E-05 
0.500 000E-01 1.000 29 -0.787 077E-05 1.000 30 -0.192 559E-04 
0.100 000 1.000 29 -0.158 025E-04 1.000 30 -0.370 117E-04 
0.500 000 1.000 25 -0.889 353E-04 1.000 28 -0.129 457E-03 
0.750 000 1.000 20 -0.153 079E-03 1 .OOO 23 -0.171 871E-03 
1.000 00 1.000 15 -0.239 382E-03 1.000 15 -0.250 075E-03 
2.500 00 1.000 04 -0.889 589E-03 1.000 01 -0.953 223E-03 
5.000 00 1.000 01 -0.194 483E-02 0.999 999 -0.198 802E-02 
7.500 00 0.999 998 -0.296 059E-02 0.999 996 -0.299 467E-02 

10.000 0 0.999 997 -0.396 91 1E-02 0.999 992 -0.399 699E-02 
25.000 0 0.999 950 -0.998 894E-02 0.999 950 -0.999 935E-02 
50.000 0 0.999 797 -0.199 939E-01 0.999 800 -0.199 985E-01 
75.000 0 0.999 527 -0.299 877E-01 0.999 550 -0.299 954E-01 

100.000 0.998 827 -0.395 426E-01 0.999 200 -0.399 893E-01 

Table 2. Numerical determination of the Eckart potential from fo/fl. This latter quantity as 
a function of 12-21 is calculated from (2.18). The input data V(N) and the output VINV 
are compared for a number of points. The parameters used in this calculation are N = 48, 
A=0.35 ,@=1 a n d v = $ .  

0.350 00 
0.700 00 
1.050 0 
1.400 0 
1.750 0 
2.100 0 
2.450 0 
2.800 0 
3.150 0 
3.500 0 
3.850 0 
4.200 0 
4.550 0 
4.900 0 
5.250 0 
7.000 0 

10.500 
14.000 
16.800 

0.802 54 
0.475 42 
0.298 97 
0.195 16 
0.130 53 
0.887 34E-01 
0.609 87E-01 
0.422 35E-01 
0.294 02E-01 
0.205 43E-01 
0.143 90E-01 
0.100 98E-01 
0.709 47E-02 
0.498 91E-02 
0.351 06E-02 
0.608 29E-03 
0.183 58E-04 
0.554 35E-06 
0.337 10E-07 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
20 
30 
40 
48 

0.802 54 
0.475 42 
0.298 97 
0.195 16 
0.130 53 
0.887 34E-01 
0.609 86E-01 
0.422 22E-01 
0.292 91E-01 
0.198 31E-01 
0.106 35E-01 

-0.645 13E-02 
-0.540 98E-01 
-0.183 05 
-0.463 59 

4.754 3 
4.842 9 

2.680 0 
13.450 
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other solvable model v ( x )  = 2(x-’- b-*), with the parameters b = 17.955, c = 1.155 
and N = 48, the same method yields the results that are shown in table 3. Again one 
notices that the inversion works very well for the first eleven points and then numerical 
errors become very large. 

In the second approach, we start with Thiele’s fit of the logarithmic derivative of the 
wavefunction given by equations (3.6) and (3.15). Since the accumulation of errors in 
the continued fraction expansion forces us to choose N small and A large (A = 0.35), in 
the case of the Eckart potential which varies rapidly as a function of x, we use fo/fl as is 
given by (3.6) rather than (3.4) as the input. It should be emphasised that the utilisation 
of (3.6) as the input data differs from the use of the iterative solution of fo/fl mentioned 
above, since in (3.6)f0/fi is obtained from the exact solution of the differential equation 
(3.1) at two neighbouring points. In table 4 the ratio of the logarithmic derivative of II, 
to Z N ( f )  which is calculated from equations (3.4) and (3.6) is given for different values 

Table 3. Comparison between the input inverse square potential and VZNV obtained from 
the inversion of f o / f l .  ( b  = 17.955, c = 1.155, N =48.) 

f N /  f N  + 1 = 5 

1.505 0 0.876 79 1 0.876 79 
1.855 0 0.575 02 2 0.575 02 
2.205 0 0.405 15 3 0.405 15 
2.555 0 0.300 17 4 0.300 17 
2.905 0 0.230 79 5 0.230 79 
3.255 0 0.182 56 6 0.182 56 
3.605 0 0.147 69 7 0.147 69 
3.955 0 0.121 66 8 0.121 65 
4.305 0 0.101 71 9 0.101 68 
4.655 0 0.860 94E-01 10 0.859 97E-01 
5.005 0 0.736 36E-01 11 0.738 54E-01 
5.355 0 0.635 41E-01 12 0.679 46E-01 
5.705 0 0.552 46E-01 13 0.860 24E-01 
6.055 0 0.483 47E-01 14 0.201 16 
6.405 0 0.425 48E-01 15 0.671 87 
8.155 0 0.238 70E-01 20 9.860 0 

11.655 0.851 95E-02 30 9.912 3 
15.155 0.250 42E-02 40 7.219 4 
17.955 -0.102 26E-07 48 -2.019 3 

Table 4. The logarithmic derivative of the Eckart wavefunction at the origin obtained from 
(3.3) divided by ZN([ )  calculated from equations (2.19) and (3.6). 

0.01 0.1 1 5 

3.5 x 1.003+ 10-’i 1.003 + w 4 i  1.001 + 10-~i  1 - 8 ~ 1 0 - ~ i  
1 . 7 5 ~  lo-’ 1.017+6x lO-’i 1.017+6x 10-4i 1.003+5x 10-3i 1-4x lO-’i 
0.35 x lo-’ 1.035+ 10-4i 1 .035+1.3~1O-~i  1 .006+9.7~1O-~i  0.997-8.5xlO-*i 
1.75 1.178+7x l O W 4 i  1.178+7.6x lOw3i  1.019+3.7x lo-? 0.937-0.42i 
0.35 1 . 3 6 + 1 . 8 ~ 1 0 - ~ i  1.36+1.8x lo-? 1.023+4.7X lo-? 0.74-0.85i 
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of k and A. As is expected, for small values of A, this ratio is very close to unity, but it 
deviates significantly from this value when both A and k become large. In the case of the 
second model (equation (3.7)), because of the slow variation of the potential we use the 
exact values of the logarithmic derivative as the input data. The Thiele’s fit is obtained 
by taking 49 points of Z ( k )  in the range k = 0.1 x lo-’ and k = 45 and calculating 
Z4,(5’ - 25) according to (4.1). Then by expanding Z4&* - 25) as a continued fraction 
we find the potential v ( x ) .  In tables 5 and 6 this method has been applied to the two 
models of 0 3 and different boundary conditions have been used for FN/FN+I. As the 
numbers indicate the results of inversion are insensitive to the boundary condition as 
long as a rational approximation for FN/FN+~ in terms of 5’ - 25 is used in calculating 
(2.18). Similar to the results obtained for the direct problem the method is unstable 
when a large number of points are included in the fit. 

6.  Discussion 

The difference equation (2.7) is not the only possible asymmetric form which is 
compatible with the rational fraction fit of the logarithmic derivative of the 
wavefunction. For instance, we can replace exp( - A’v,) in equation (2.16) by 1 - A’v, 
without affecting the basic properties of the equation or its solution. Other possible 
modifications of this asymmetric difference equation may, in fact, be desirable since the 
variable 5’-25 occurring in (2.16) does not have a simple physical interpretation. 
Concerning the numerical accuracy of the results we observe that in this formulation the 
direct and the inverse problems are solved using the same set of difference equations. 

Table 5. Calculation of the Eckart potential from fo/fl when the latter is obtained from 
Thiele’s rational fraction fit to equation (3.6). For comparison the values of the exact 
potential at these points are given. 

fN/fN+l= 5 fN/fN+1 = 1 fN/fN+I = -1(5*-21) 

X ( N )  V ( N )  N VINV N VINV N VINV 

0.350 00 
0.700 00 
1.050 0 
1.400 0 
1.750 0 
2.100 0 
2.450 0 
2.800 0 
3.150 0 
3.500 0 
3.850 0 
4.200 0 
4.550 0 
4.900 0 
5.250 0 
7.000 0 

10.500 
14.000 
16.800 

~~ ~~ ~ 

0.802 54 
0.475 42 
0.298 97 
0.195 16 
0.130 53 
0.887 34E-01 
0.609 87E-01 
0.422 35E-01 
0.294 02E-01 
0.205 43E-01 
0.143 90E-01 
0.100 98E-01 
0.709 47E-02 
0.498 91E-02 
0.351 06E-02 
0.608 29E-03 
0.183 58E-04 
0.554 35E-06 
0.337 10E-07 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
1 5  
20 
30 
40 
48 

0.802 60 
0.476 20 
0.303 62 
0.203 10 
0.184 53E-01 

-1.072 8 
-4.317 8 
-5.096 1 
-1.054 7 

2.355 0 

9.824 1 
13.741 

-12.455 
16.272 
-3.461 0 
-2.410 3 
-4.940 3 

-10.848 
-3.314 8 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
20 
30 
40 
48 

0.802 54 
0.475 42 
0.298 97 
0.195 16 
0.130 53 
0.887 35E-01 
0.609 81E-01 
0.421 64E-01 
0.291 41E-01 
0.211 44E-01 
0.343 20E-01 
0.230 35 
1.652 1 

-6.702 8 
-14.192 

2.127 4 
4.459 9 

-8.495 6 
-2.152 9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
20 
30 
40 
48 

0.802 54 
0.475 42 
0.298 97 
0.195 16 
0.130 53 
0.887 42E-01 
0.610 84E-01 
0.432 74E-01 
0.389 30E-01 
0.948 24E-01 
0.530 72 
4.045 0 

-7.647 1 
-20.904 
-5.671 5 

-10.595 
3.320 6 

-8.296 4 
-2.396 7 
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Table 6. The result of the inversion of fo/f l  for the inverse square potential using Thiele’s fit 
of equation (3.15). 

1.505 0 
1.855 0 
2.205 0 
2.555 0 
2.905 0 
3.255 0 
3.605 0 
3.955 0 
4.305 0 
4.655 0 
5.005 0 
5.3550 
5.7050 
6.0550 
6.4050 
8.1550 

11.655 
15.155 
17.955 

0.876 79 
0.575 02 
0.405 15 
0.300 17 
0.230 79 
0.182 56 
0.147 69 
0.121 66 
0.101 71 
0.860 94E-01 
0.736 36E-01 
0.635 41E-01 
0.552 46E-01 
0.483 47E-01 
0.425 48E-01 
0.238 70E-01 
0.851 95E-02 
0,250 42E-02 

-0.102 26E-07 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
20 
30 
40 
48 

0.876 79 1 
0.575 02 2 
0.405 28 3 
0.301 33 4 
0.237 19 5 
0.206 08 6 
0.205 09 7 
0.200 36 8 
0.938 84E-01 9 

-0.858 60E-01 10 
1.283 8 11 

19.023 12 
-18.965 13 

8.315 8 14 
-2.229 2 15 
25.205 20 

-14.002 30 
-5.096 8 40 
-2.053 5 48 

0.876 79 
0.575 02 
0.405 15 
0.300 17 
0.230 79 
0.182 57 
0.147 74 
0.121 80 
0.101 63 
0.752 60E-01 

-0.758 32E-01 
-1.2359 
-6.160 5 
-10.329 
-4.246 2 
-2.885 8 
11.028 
-7.428 5 
-2.744 5 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
20 
30 
40 
48 

0.876 79 
0.575 02 
0.405 15 
0.300 17 
0.230 79 
0.182 57 
0.147 69 
0.121 54 
0.994 09E-01 
0.582 41E-01 

-0.177 81 
-1.646 6 
-6.628 6 
-9.348 4 
-2.501 6 
-2.608 8 
25.837 
-9.183 3 
-2.273 6 

While the results for the direct problem can be found with great accuracy by choosing N 
to be large (table l ) ,  in the inverse problem the numerical errors accumulate and this 
limits the choice of N. We have studied this by trying different but algebraically 
equivalent forms of computing the continued fraction (Baker 1975) and found that the 
accuracy changes significantly with the form used and the number of arithmetic 
operations involved in the calculation. Let us now briefly mention the error estimates 
for the difference equation (2.7). In the direct problem the error due to the rational 
approximation of the boundary condition (2.20) is not magnified, but the error due to 
roundings in arithmetical operation in a single step is increased by a factor N (Blanch 
1964). For the inverse problem the error due to the finite-difference approximation for 
the logarithmic derivative (2.19) is not as important as the round off errors in the 
J-fraction expansion. For the two models that we have studied these errors seem to be 
independent of the shape and the strength of the potential. Once a more accurate 
numerical technique for obtaining the continued fraction expansion of the Pad6 
approximant is found, then it may be possible to apply this method to a number of 
interesting problems including the following. 

(i) Inverse scattering problem for static potentials plus a boundary condition 
model at short distances. As is well known the concept of the nucleon-nucleon 
potential breaks down for very short distances (less than 0.5 F), (see, for instance, 
Moravcsik 1972), and it is reasonable to represent the interaction in the innermost 
region by a boundary condition which may or may not be energy dependent. Since in 
boundary condition models the logarithmic derivative is given, one may conjecture that 
a procedure similar to what has been discussed in this paper can be used to determine 
the outer potential from the scattering phaseshifts. 
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(ii) Complex potentials. The present formulation allows for the direct or the 
inverse problems when the interaction is complex. Since a part of the problem of 
instability of our numerical computation is due to the rapid growth of the imaginary part 
of exp( - A2u,) when the number of points increases, therefore in inverting R matrices 
corresponding to the complex optical potentials, we expect even more numerical 
instability than the present case. 

(iii) Wave propagation in an inhomogeneous medium. By a simple modification, 
i.e. using travel time coordinates (Ware and Aki 1968), the same method can be used 
for the inversion of the problem of one-dimensional wave propagation. 
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